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Lung injury is the most pertinent manifestation of
extra-abdominal organ dysfunction in pancreatitis. The
propensity of this retroperitoneal inflammatory condition to
engender a diffuse and life-threatening lung injury is significant.
Approximately one third of patients will develop acute lung
injury and acute respiratory distress syndrome, which account
for 60% of all deaths within the first week. The variability in the
clinical course of pancreatitis renders it a vexing entity and
makes demonstration of the efficacy of any specific
intervention difficult. The distinct pathologic entity of
pancreatitis-associated lung injury is reviewed with a focus on
etiology and potential therapeutic maneuvers. Curr Opin Crit Care
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Acute pancreatitis is thought caused principally by auto-
digestion of the pancreas, with extravasation of proteo-
lytic enzymes and vasoactive mediators leading to in-
flammation of contiguous tissues [1]. Entry of these
noxious substances into the systemic circulation results
in multiorgan complications [2]. The mechanisms that
initiate progression to end-organ injury in pancreatitis
remain ill defined [1]; however, excessive neutrophil cy-
totoxicity is convincingly implicated in the development
of lung injury, the most pertinent manifestation of extra-
abdominal organ dysfunction in pancreatitis [3].

Approximately one third of patients will develop acute
lung injury (ALI) and acute respiratory distress syn-
drome (ARDS) [2], which account for 60% of all deaths
within the first week [2]. Improved supportive and ven-
tilatory treatment of these critically ill patients has re-
sulted in a modest decline in the overall mortality rate;
however, the underlying inflammatory process remains
unchecked by medical intervention [4•]. Various thera-
peutic endeavors have been proposed, but few exhibit
pertinence in the clinical setting [5]. Supportive care,
including mechanical ventilatory support, remains the
principal determinant of outcome, but disappointingly,
mortality in this cohort exceeds 75% [6].

Mechanisms of lung injury
Increased pulmonary microvascular permeability with
protein-rich transudate spilling into the alveolar spaces
and decreased lung compliance are the hallmarks of ALI.
These manifest clinically as progressive hypoxemia with
radiologic evidence of diffuse infiltrations. Physicochem-
ical alterations in the pulmonary vascular barrier are me-
diated by the local release of cytotoxic and vasoactive
substances [7]. Evidence for the central role of these
alterations in vascular permeability is derived from stud-
ies demonstrating increased bronchoalveolar lavage pro-
tein levels and lung wet to dry weight ratios [8,9•]
in models of ALI. Experimental pancreatitis also
induces intra-alveolar edema, distal airway contraction
[10], endothelial cell damage, and leukocyte sequestra-
tion [11], as evidenced by pulmonary myeloperoxidase
activity [8,9•].

The propensity of a heterogenous group of extrapulmo-
nary pathologies to engender a diffuse and frequently
life-threatening lung injury is predicated on the complex
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interplay of endogenous proinflammatory and anti-
inflammatory mediators liberated as a consequence of a
distant insult. Given the retroperitoneal origin of this
inflammatory process, attention has focused on explain-
ing the induction of respiratory dysfunction. Recent
studies suggest that the liberation of the pancreatic en-
zyme elastase may lead to systemic activation of inflam-
matory cells [12•,13]. The agent of tissue destruction is
the neutrophil, a cell with considerable cytotoxic poten-
tial. Unrestrained activation of neutrophils has been
strongly implicated in the development of ALI [9•]. The
sequence of events leading to lung injury culminates in
the inappropriate entrapment of neutrophils within lung
tissue [3].

Neutrophil recruitment
Teleologically, neutrophil activation and transmigration
equip the host to withstand and combat septic challenge
and are integral to the successful functioning of the in-
nate immune system. However, in states of immunologic
disarray, the unleashing of their potent destructive fac-
ulties results in unnecessary tissue damage. The pivotal
importance of neutrophil accumulation in the instigation
of pulmonary injury is substantiated by the findings of
studies using agents to attenuate or abrogate neutrophil
cytotoxicity [14].

The mediation of neutrophil entrapment within the lung
is a consequence of complement activation, cytokine
production, and stimulation of adhesion molecule ex-
pression and alveolar macrophages [15]. Secretion of che-
moattractant substances, including tumor necrosis factor
(TNF)-�, interleukin (IL)-1�, IL-8, fMet-Leu-Phe (a
bacterial wall product), and complement factor C5a, re-
sults in enticement of neutrophils to the pulmonary mi-
crovasculature. Exposure of neutrophils to these endog-
enous inflammatory mediators leads to an upregulation
of �-2-integrin expression and an enhanced adhesive
potential.

The signaling molecule TNF-�, discharged from acti-
vated macrophages, exerts a considerable amplifying in-
fluence on the systemic inflammatory response. The se-
verity of pancreatitis has been shown to correlate with
TNF-� activity [16], and high concentrations can be
found in ascitic fluid [17]. After the onset of pancreatitis,
TNF-� production within lung parenchyma reaches sig-
nificant levels [18], and large quantities of cytokines,
including TNF-�, are released from macrophages via a
p38 mitogen-activated protein (MAP)–kinase activated
pathway [19].

The predominant role of monocyte-derived inflamma-
tory cytokines in promoting neutrophil recruitment, ad-
herence, and extravasation is further emphasized by the
observation of a positive correlation between clinical se-
verity and serum concentration of IL-8 in pancreatitis.

IL-8 is a potent chemoattractant and a leukocyte and
T-cell activator [20]; IL-8 found in the air spaces of pa-
tients with ARDS is associated with high mortality [21].
IL-8 may also play a role in promoting polymorphonu-
cleocyte (PMN) traffic into lung tissue via a CD18 inde-
pendent pathway [22,23], because inhibition of CD18
expression results in merely a 40% reduction in PMN
accumulation [24•].

Neutrophil adhesion
The cytokine-driven inflammatory response results in
upregulation of intercellular adhesion molecule-1
(ICAM-1) expression on endothelial cells, and the ligand
�-2-integrin (CD11b/CD18) expression on leukocytes.
This facilitates neutrophil–endothelial cell interaction,
ultimately engendering endothelial hyperpermeability.
The initial step in a process culminating in firm neutro-
phil-endothelial cell adherence is neutrophil rolling, in-
volving L-selectin and P-selectin and mediated by the
neutrophil–endothelial interactions.

The detection of elevated circulating levels of ICAM-1,
an inducible endothelial cell surface protein, in patients
with pancreatitis [25] has led to speculation that this
ligand for �-2-integrin may be a major determinant of
leukocyte adhesion [26]. This notion is supported by the
finding that pulmonary expression of ICAM-1 is in-
creased in pancreatitis [27,28], and that ICAM-1–
deficient mice with pancreatitis evince less lung injury
[27] than their disease-free counterparts.

In addition to alterations in the adhesive qualities of
neutrophils, conformational changes in the actin cyto-
skeleton may further enhance accumulation of leuko-
cytes in vascular beds. Polymerization of F-actin fila-
ments in activated neutrophils may render cytoskeletal
structure more resolute and less inclined to deform [29],
resulting in an entrapment of activated leukocytes within
alveolar capillaries. Phagocytosis of entrapped apoptotic
neutrophils at the site of inflammation limits neutrophil-
mediated tissue insult [3]. Dysfunction of this regulatory
mechanism is a pivotal component in the propagation of
the massive inflammatory response evident in systemic
inflammatory response syndrome.

Neutrophil activation
Although the onset of endothelial hyperpermeability
parallels the accumulation of leukocytes within the lung,
mere sequestration does not engender endothelial leak,
but rather the subsequent adhesion and activation of the
entrapped neutrophils [30,31]. The infiltration of acti-
vated and adherent neutrophils into the lung paren-
chyma and their ultimate degranulation with release of
proteolytic enzymes and reactive oxygen species result
in the stigmata of lung injury. Some of the cellular prod-
ucts that play a role in the pulmonary damage include
nitric oxide, a potent vasoregulatory mediator, and ara-
chidonic acid metabolites [32,33]. Nitric oxide, released
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by alveolar macrophages, has been implicated in the de-
velopment of microvessel permeability, possibly through
the generation of free radicals [34]. Enhanced nitric ox-
ide synthesis has been implicated in pancreatitis induced
by a range of experimental protocols and appears to be a
central event [35].

Neutrophil-derived reactive oxygen species are believed
to be a product of the nicotinamide adenine dinucleotide
phosphate oxidase complex, and inhibition of this path-
way results in an attenuation of lung injury [36]. The
unleashing of proteases such as elastase by PMNs further
contributes to pulmonary injury [37]. Recent studies
have demonstrated that migration of leukocytes through
the basement membrane is associated with the release of
matrix metalloproteinases, whereas their inhibition cor-
relates with limited transendothelial transport [38].

Signal transduction pathways
Neutrophil activation leads to a redistribution of various
cytoskeletal proteins and is associated with tyrosine ki-
nase activation [39], increasing integrin binding avidity
through the initiation of complex intracellular signal
transduction pathways. Phosphorylation of various pro-
tein tyrosine kinases, including the lipid kinase phospha-
tidyl inositol 3-kinase [40], protein kinase-C [41], Src-
kinases, and the MAP-kinases such as p38 MAP-kinase,
extracellular signal–related kinase, and Jun N-terminal
kinase [42], is a recurrent theme in signal transduction.
The activation of p38 MAP-kinase by, among others,
lipopolysaccharide [43] augments neutrophil cytotoxic
potential by causing an escalation in the liberation of free
radicals, enhancing integrin adhesive qualities [44],
and regulating the synthesis of proinflammatory
cytokines [4•].

The induction of the local transcription factor nuclear
factor-�B and the consequent expression of multiple
rapid response inflammatory genes, culminating in the
release of IL-6 and IL-8, TNF-�, and cyclo-oxygenase–
2, has been described in a variety of inflammatory and
autoimmune conditions, including inflammatory bowel
disease [45], rheumatoid arthritis [46], and endotoxin-
induced lung inflammation [47], in which a temporal
correlation has been observed between nuclear factor-�B
activation in lung and the expression of cytokine mRNA
[48]. Not surprisingly, expression of this dimeric tran-
scription factor has also been described in acute pancre-
atitis [12•,49,50•]. Transcriptional upregulation within
pulmonary vascular endothelium of IL-6 and IL-8 pro-
duction has been observed after exposure to pancreatic
ascites [51], whereas the systemic administration of pan-
creatic elastase results in pulmonary activation of nuclear
factor-�B [12•].

Type II pneumocytes
The association between quantitative and qualitative de-
ficiencies in surfactant production and lung injury has
long been established. After an inflammatory insult, type

II cells differentiate into type I cells [52], further com-
promising pulmonary phospholipid synthesis.

Prevention and treatment
The seeming unresponsiveness of pancreatitis-
associated lung injury to intervention renders this con-
dition a vexing entity and makes demonstration of the
efficacy of any specific intervention difficult. Treatment
remains largely nonspecific. Although there is good evi-
dence for the use of antibiotics [53] and nutritional sup-
port [53,54•] in severe pancreatitis, paradigms of treat-
ment based on antisecretory agents have been
profoundly disappointing [55]. Once a decrease in lung
compliance and an impairment of gas exchange become
clinically manifest, the progression to ARDS and, ulti-
mately, multiple organ dysfunction syndrome is well es-
tablished, frequently rendering prevention unattainable.
Ventilation is the principle therapeutic maneuver, al-
though recent interest has focused on suppressing the
overly exuberant inflammatory response. Attempts to in-
fluence the interplay between proinflammatory and anti-
inflammatory cytokines may offer the best prospect of
diminishing pulmonary involvement. However, there are
few accepted therapeutic endeavors in this regard.

Inhibition of nuclear factor-�B expression or signaling is
immunosuppressive and modulates cytotoxicity, and has
been shown to reduce lung injury and mortality rate in
experimental models of pancreatitis [56,57]. Although ni-
tric oxide has been implicated in the progression and
amplification of the systemic response, its exact role is
disputed, because some authors have found it protective
when administered pharmacologically [11]. In contrast,
some therapeutic success in improving local and sys-
temic injury has been achieved by inhibiting nitric oxide
synthesis in animal models [33,58]. Excessive nitric ox-
ide production is associated with diaphragmatic dysfunc-
tion [59], which may be attenuated by an inducible nitric
oxide synthase inhibitor [60].

Other strategies to attenuate pulmonary injury in pan-
creatitis have focused on reducing neutrophil and mac-
rophage influx or function. These are attractive proposals
because the lung damage is largely cell-mediated [61,62].
Inhibition of neutrophil L-selectin and pulmonary
ICAM-1 expression has been shown to prevent leuko-
cyte microvascular sequestration and results in an attenu-
ation of end-organ damage [63•,64–66]. Treatment of
rats with a neutralizing antibody against cytokine-
induced neutrophil chemoattractant offers protection
from pancreatitis-associated ALI [61,67], whereas block-
ade of p38 MAP-kinase attenuates pulmonary TNF-�
and nitrite production, impacting lung injury favorably
[4•]. Another target of monoclonal antibody therapy is
IL-8, which plays a predominant role in neutrophil che-
motaxis. Anti–IL-8 suppresses serum IL-8 and TNF-�
and pulmonary expression of �-2-integrin, resulting in
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diminished pulmonary damage [68]. Pretreatment of rab-
bits with a synthetic IL-10 agonist reduces the stigmata
of lung injury [69]; however, a recent randomized trial
exploring the potential of IL-10 for prophylaxis in hu-
mans failed to show any benefit associated with this po-
tent anti-inflammatory cytokine [70]. The platelet acti-
vating factor antagonist acetyl hydrolase is currently in
clinical trial after promising anti-inflammatory results in
an animal model [71]. Animal models of pancreatitis
have a propensity for responding to manipulation of cy-
tokine pathways, but, lamentably, this response rarely
translates into a demonstrable clinical effect in human
trials. Furthermore, the pharmacodynamics or toxicity of
these agents may limit their value in critically ill patients
with multiple organ dysfunction syndrome.

The immunomodulatory effects of hypertonic saline in-
fusion provide potential strategies for attenuating inap-
propriate neutrophil activation. Significant attenuation of
end-organ injury has been demonstrated in an animal
model of pancreatitis with intravenous hypertonic resus-
citation [8]. The benefits of transient hyperosmolar
resuscitation extend to the attenuation of receptor-med-
iated PMN functions, including the downregulation
of neutrophil oxidative burst activity and adhesion
molecule expression, and the suppression of PMN
activation [72].

Selective reduction of hyperresponsive inflammatory in-
filtrates may also be achieved in the lung through the
tracheobronchial route. Aerosolized hypertonic saline is
as successful as intravenous infusion in ameliorating pul-
monary infiltration and damage in experimental pancre-
atitis [8,9•]. The advantages of this route include ana-
tomic specificity and potential safety in the presence of
renal, biochemical, or cardiac abnormalities. Further-
more, it avoids potential central nervous system damage
with intravenous solutions of varying tonicity [73].

Ventilation strategies
Current critical care stratagems attempt to improve lung
mechanics and oxygenation in patients with ARDS by
optimizing alveolar recruitment and maintaining lung
volume. Persistently atelectatic lung predisposes to su-
perimposed infection and necessitates use of increased
airway pressure, increasing the potential for ventilation-
induced alveolar injury. Sustaining lung recruitment is
critical to prevent lung injury arising from the subjection
of lung units to repeated shear stress. Recent data have
demonstrated that low tidal volume ventilation (approxi-
mately 6 mL/kg) reduces mortality [74•,75] and, when
combined with positive end-expiratory pressure, induces
as little lung damage as high frequency oscillation ven-
tilation [76].

A number of novel ventilation strategies are under con-
sideration. A significant reduction in pulmonary shunt in

patients with ALI and ARDS was observed with prone
positioning [77], resulting in a decrease in hypoxemia
[78]. Numerous animal studies have shown improved
ventilation mechanics after the intra-alveolar administra-
tion of perfluorocarbons, and the potential adjunctive
role of liquid ventilation has aroused considerable inter-
est [79]. The dense and inert nature of perfluorocarbons
facilitates distribution to collapsed and dependent lung
units, where a reduction in surface tension results, and
augments lung recruitment. The deleterious effects of
heightened alveolar surface tension caused by surfactant
depletion underlie partial liquid ventilation and the
therapeutic instillation of exogenous surfactant. Admin-
istration of surfactant has been shown to attenuate ven-
tilation-induced lung injury in animal models [80]. Pres-
ervation of surfactant producing type II cells may
facilitate recovery from lung injury.

Nutrition
Severe pancreatitis induces a state of profound catabo-
lism, necessitating nutritional support. Traditionally, to-
tal parenteral nutrition has been used to provide exog-
enous nutrients; however, enteral nutrition offers several
putative benefits: restitution and preservation of gut bar-
rier integrity, and less septic complications. Further-
more, induction of ICAM-1 expression has been noted
subsequent to parenteral feeding [27]. A recent meta-
analysis of trials noted a trend toward less adverse out-
comes with enteral feeding [81], and another study ob-
served the induction of a more benign immunologic
profile [82].

Conclusions
Future attempts to devise effective treatment regimes
for this frustrating disease are likely to focus on inter-
rupting the propagation of the inflammatory cascade at
the cellular level. Regulators of cellular signal transduc-
tion pathways such as p38 MAP-kinase and nuclear fac-
tor-�B inhibitors provide potential pharmacologic targets
for suppressing unchecked and unrestrained inflamma-
tion. Inhalational therapy with nitric oxide, aerosolized
hypertonic saline, or pharmacologic agents may repre-
sent the most plausible interventions to improve out-
come in patients with pancreatitis-induced ARDS. Clini-
cal trials are warranted.
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